References

Albinati, A., Meille, S. V., Arnoldi, A. \& Merlini, L. (1988). Acta Cryst. C44, 1782-1784.
Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen. The Netherlands.
Brisse, F. \& Sygusch, J. (1974). Acta Cryst. B30, 480-486.
Calabrese, J. C. (1972). PHASE. Patterson Heaw Atom Solution Extractor. University of Wisconsin-Madison, USA
Camalli, M. \& Spagna, R. (1994). J. Appl. Cryst. 17, 861-862.
Carrell, H. L. (1976). VIEW. Program for Molecular Graphics. Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
Caruso, F. \& Rossi, M. (1998). Acta Cryst. C54, 842-844.
Domenicano, A. \& Murray-Rust, P. (1979). Tetrahedron Lett. 24. 2283-2286.
Hirsch, K. S., Jones, C. D., Lindstrom, T. D., Stamm, N. B., Sutton. G. P., Taylor, H. M. \& Weaver, D. E. (1987). Steroids, 50, 201-217.

Jones, C. D., Winter, M. A., Hirsch, K. S., Stamm, N.. Taylor, H. M. Holden, H. E., Davenport, J. D., Krumkalns, E. V. \& Suhr, R. G. (1990). J. Med. Chem. 33, 416-429

Kennard, C. H. L., Smith, G. \& Palm, T.-B. (1981). Acta Cryst. B37. 1796-1798.
Lindstrom, T. D. \& Whitaker, G. W. (1987). Fundam. Appl. Toxicol. 8, 595-604.
Mason, J. I., Murry, B. A., Olcott, M. \& Sheets, J. (1985). J. Biochem. Pharmacol. 34, 1087-1092.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC. 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSCIAFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Taylor, H. M., Jones, C. D., Davenport, J. D., Hirsch. K. S., Kress. J. T. \& Weaver, D. (1987). J. Med. Chem. 30, 1359-1365.

Acta Cryst. (1998). C54, 1670-1672

$\boldsymbol{\beta}$-1- \boldsymbol{N}-Benzamido-D-glucopyranose

D. Sriram, ${ }^{a}$ S. Srinivasan, ${ }^{a}$ K. Priya, ${ }^{b}$ V. Aruna ${ }^{b}$ and D. Loganathan ${ }^{b}$
${ }^{a}$ Department of Physics, Indian Institute of Technology, Madras 600 036, India, and ${ }^{b}$ Department of Chemistry, Indian Institute of Technology, Madras 600 036, India.
E-mail: loganath@acer.iitm.ernet.in

(Received 5 January 1998: accepted 21 May 1998)

Abstract

In the title compound, 1-benzamido- β-D-glucopyranose, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{6}$, the pyranose ring adopts the ${ }^{4} C_{1}(D)$ conformation and the N -acetyl group exists in the Z -anti conformation. The primary alcohol group is disordered between the two permitted orientations, $g g$ and $g t$.

Comment

The vital roles played by glycoprotein glycans in many biological processes are well documented (Lis \& Sharon, 1993). As part of our systematic study aimed at determining the three-dimensional structure of the linkage region in N-glycoproteins, we have previously described the crystal structure of the simplest model compound, viz. β-1- N -acetamido-d-glucopyranose (Sriram et al., 1997). In continuation of this study, we report here on the crystal structure of the title compound, (I), chosen as an interesting hydrophobic analogue.

(I)

The ORTEPII (Johnson, 1976) plot of the benzamido derivative, giving the numbering scheme, is shown in Fig. 1. The pyranose ring adopts a ${ }^{4} C_{1}(D)$ chair conformation, with the values of the puckering parameters (Cremer \& Pople, 1975) being $Q=0.566(4) \AA, \theta=$ $173.4(4)^{\circ}$ and $\varphi=174(4)^{\circ}$. The amide proton is anti with respect to its anomeric proton, with the $\mathrm{Hl}-\mathrm{Cl}-$ $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$ torsion angle being -151°. The benzamido group exists in the Z-anti conformation ($\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 1-$ $\mathrm{Cl}^{\prime}-\mathrm{Ol}^{\prime}=171^{\circ}$). The above features, together with the pyranose ring bond lengths and angles and dihedral angles, are similar to those observed for the acetamido compound (Sriram et al., 1997).

Fig. 1. ORTEPII (Johnson, 1976) plot, showing the molecular structure and atom-numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The most interesting variation noticed in the crystal structure is the twofold disorder observed for the oxygen at C6. The partial occupancies for O6A and $06 B$ are 0.71 (1) and $0.29(1)$, respectively. The primary
alcohol group involving O6A adopts the $g g$ conformation, whereas the one involving $O 6 B$ takes up the $g t$ conformation, as evident from the values of the torsion angles (O5/C4)-C5-C6-(O6A/O6B) (see Table 1). Such twofold disorder occurring between two permitted orientations has been observed previously in the crystal structures of α-L-sorbopyranose and meso-erythritol (Jeffrey, 1990). The primary hydroxyl group takes up only the $g g$ conformation in solution, as evident from the ${ }^{1} \mathrm{H}$ NMR coupling constants, $J_{6,5}=2.0$ and $J_{6^{\prime}, 5}=$ 5.1 Hz .

The O atom at C 2 is also disordered, with $\mathrm{O} 2 A$ and O2B having occupancies of 0.62 (2) and 0.38 (2), respectively. The bond geometries involving both O6 and O 2 show deviations from their ideal values, which are attributed to their large disorder and displacement parameters.

Experimental

Perbenzoylation of β-D-glucopyranosylamine was performed following the literature procedure of Avalos et al. (1992). The product obtained was selectively de- O-benzoylated using sodium methoxide in dry methanol. Neutralization from IR$120 \mathrm{H}^{+}$resin, followed by evaporation of the methanolic solution to dryness and crystallization from ethanol, afforded prismatic crystals of the title compound (m.p. 501 K). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, p.p.m.): $\delta 7.85(d, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{H} 3^{\prime}$ and $\left.\mathrm{H}^{\prime}\right), 7.66\left(t, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 7.56(t, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}, \mathrm{H}^{\prime}$ and $\left.\mathrm{H}^{\prime}\right), 5.23(d, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{H} 1), 3.94(d d$, $\left.1 \mathrm{H}, J_{6 A, 6 B}=12.2, J_{6 A, 5}=2.0 \mathrm{~Hz}, \mathrm{H} 6 A\right), 3.79\left(d d, 1 \mathrm{H}, J_{6 B, 6 A}=\right.$ $\left.12.2, J_{6 B, 5}=5.1 \mathrm{~Hz}, \mathrm{H} 6 B\right), 3.68-3.59(m, 3 \mathrm{H}), 3.52(t, 1 \mathrm{H}, J=$ 9.3 Hz); ${ }^{13} \mathrm{C}$ NMR (p.p.m.): $\delta 174.6$ (-NHCO-), 135.5, 131.5, 130.3, 130.2, 82.7 (C1), 80.5, 79.4, 74.6, 72.1, 63.4 (C6).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{6}$
$M_{r}=283.28$
Orthorhombic
$P 2_{1} 2_{1}$ 2 $_{1}$
$a=5.4367$ (7) \AA
$b=8.0061$ (8) \AA
$c=29.452(3) \AA$
$V=1282.0(2) \AA^{3}$
$Z=4$
$D_{x}=1.468 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 1313 measured reflections
1313 independent reflections
1236 reflections with
$I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=8-12^{\circ}$
$\mu=0.991 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic
$0.45 \times 0.42 \times 0.37 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=67.93^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 9$
$l=0 \rightarrow 35$
2 standard reffections frequency: 60 min intensity decay: 3%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.161$
$S=1.085$
1313 reflections
198 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1129 P)^{2}\right.$
$+0.5341 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.737 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.198 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0158 (24)

Scattering factors from International Tables for
Crystallography (Vol. C)
Absolute structure:
Flack (1983)
Flack parameter $=0.1$ (6)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cl}-\mathrm{O} 5$	1.420 (5)	C3-C4	1.512 (6)
$\mathrm{Cl}-\mathrm{N} 1$	1.435 (4)	C4-C5	1.524 (6)
$\mathrm{C} 1-\mathrm{C} 2$	1.518 (6)	$\mathrm{C} 5-\mathrm{O} 5$	1.427 (4)
C2-02A	1.428 (6)	C6-O6B	1.356 (14)
$\mathrm{C} 2-\mathrm{C} 3$	1.509 (5)	C6-O6A	1.451 (11)
$\mathrm{C} 2-\mathrm{O} 2 B$	1.539 (12)		
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 3$	116.8 (4)	O6B-C6-06A	128.5 (8)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{Cl}$	115.6 (4)	O6B-C6-C5	111.2 (8)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2 B$	98.1 (6)	O6A-C6-C5	109.1 (5)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{O} 2 \mathrm{~B}$	99.5 (6)	$\mathrm{Cl}-\mathrm{O} 5-\mathrm{C} 5$	113.0 (3)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	169.0 (3)	O5-C5-C6-O6B	80.3 (9)
$\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}$	167.7 (3)	C4-C5-C6-O6B	-158.4 (8)
$\mathrm{N} 1-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	-16.5 (5)	$\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6 \mathrm{~A}$	-66.8 (5)
$\mathrm{O} 5-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	59.8 (4)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6 \mathrm{~A}$	54.4 (6)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-53.5 (4)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{O} 5-\mathrm{C} 5$	-64.9 (4)
C2-C3-C4-C5	50.2 (5)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 5-\mathrm{Cl}$	59.6 (4)
C3-C4-C5-O5	-51.3(4)		

H atoms were constrained. Those affected by disorder were not used in the refinement. The data faded rapidly at high angles.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

The authors wish to thank the Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Madras, India, for data collection. Financial support from the Department of Science and Technology, New Delhi, India, is gratefully acknowledged.

Supplementary data for this paper are available from the IUJCr electronic archives (Reference: VJ1081). Services for accessing these data are described at the back of the journal.

References

Avalos, M., Babiano, R., Duran, C. J., Jimenez, L. J. \& Palacios, J. C. (1992). J. Chem. Soc. Perkin. Trans. 2, pp. 2205-2215.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jeffrey, G. A. (1990). Acta Cryst. B46, 89-103.
Johnson, C. K (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lis, H. \& Sharon, N. (1993). Eur. J. Biochem. 218, 1-27.
Sheldrick, G. M. (1990). Acta Crust. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sriram, D., Sreenivasan, H., Srinivasan, S., Priya, K., Vishnu Thirtha. M. \& Loganathan, D. (1997). Acta Cryst. C53, 1075-1077.

Acta Cryst. (1998). C54, 1672-1673

12,12-Ethylenedioxy-8 $\alpha, 9 \alpha$-epoxy-podocarpan-19-oic Acid \dagger

Richard C. Cambie, Lorna H. Mitchell, Clifton E. F. Rickard and P. Stewart Rutledge

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail: c.rickard@auckland.ac.nz
(Received 12 February 1998; accepted 11 June 1998)

Abstract

The stereochemistry of the epoxide ring of the title compound, 12,12-ethylenedioxy- $8 \alpha, 9 \alpha$-epoxypodocar-pan-19-oic acid, $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$, prepared during studies aimed at converting podocarpic acid into precursors for the synthesis of biologically active quassinoids, has been confirmed by X -ray structure determination.

Comment

During studies aimed at converting the natural product podocarpic acid into chiral precursors for the synthesis of biologically active quassinoids, we prepared an epoxide which was assigned the structure 12,12 -ethyl-enedioxy- $8 \alpha, 9 \alpha$-podocarpan-19-oic acid, (I) (Cambie et al., 1998). While products obtained from opening of the epoxide ring supported the assigned stereochemistry, a structural analysis was carried out on the epoxide in order to confirm the stereochemical assignment.

(I)

The structure confirms that the epoxide has $8 \alpha, 9 \alpha$ stereochemistry. The formation of the three-membered ring introduces some strain around C 8 and C 9 , ev-

[^0]idenced by the bond angles, which are up to 12.5° greater than the tetrahedral angle. The C8-C9 bond at 1.477 (3) \AA is long compared with the $\mathrm{C}-\mathrm{C}$ bond in other epoxides, where the mean is $1.466 \AA$ (Allen $e t$ al., 1987). The increased distance is presumably due to the constraint imposed by the two fused six-membered rings where the epoxide lies across the ring junction. Other distances and angles are unexceptional. There is a hydrogen bond between the proton of the carboxylic acid group and an O atom of the dioxolane ring of an adjacent molecule [$\mathrm{O} 4-\mathrm{O} 3^{i} 2.720$ (2) \AA; symmetry code: (i) $\left.1-x, \frac{1}{2}+y, 1-z\right]$. The absolute stereochemistry could not be determined and Fig. 1 shows the same stereochemistry as that of the parent podocarpic acid.

Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The title compound was obtained by epoxidation of 12,12-ethylenedioxypodocarp-8-en-19-oic acid with m-chloroperbenzoic acid in a two-phase system of dichloromethane and 0.5 M aqueous sodium hydrogencarbonate. Chromatography on silica gel and elution with dichloromethane-ether (3:1) yielded the crystals of (I) (m.p. 455-458 K).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$
$M_{r}=336.41$
Monoclinic
$P 2_{1}$
$a=10.8912(6) \AA$
$b=7.4907$ (4) \AA
$c=11.2879(6) \AA$
$\beta=111.214(1)^{\circ}$
$V=858.49(8) \AA^{3}$
$Z=2$
$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

$$
\begin{aligned}
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4922 \\
& \quad \text { reflections } \\
& \theta=2.0-27.5^{\circ} \\
& \mu=0.093 \mathrm{~mm}^{-1} \\
& T=203(2) \mathrm{K} \\
& \text { Prism } \\
& 0.60 \times 0.45 \times 0.40 \mathrm{~mm} \\
& \text { Colourless }
\end{aligned}
$$

[^0]: \dagger Systematic name: 6,6-ethylenedioxy-1,4a-dimethyl-4b α.8a α-epoxy-perhydrophenanthrene-1-carboxylic acid.

